
Performing the Spectrogram on the DSP Shield
EE264 Digital Signal Processing Final Report

Christopher Ling

Department of Electrical Engineering

Stanford University

Stanford, CA, US

x24ling@stanford.edu

Abstract—This report briefly describes the theory and

implementation of a spectrogram of an audio file performed by a

DSP shield that sends the spectrogram data over a serial link to

MATLAB. A brief analysis of the different spectrogram data will

also be discussed.

I. INTRODUCTION

 The Discrete Fourier Transform (DFT) is a great way for a

microprocessor to determine the frequency content of a signal,

but like most interesting signals that engineers would like to

analyze vary over time. This means that the frequency content

of a signal will change over time. Furthermore, taking the DFT

of a very long signal with a lot of samples can be

computationally expensive but not very information because

you do not know when certain bands of frequencies are present

at a certain point of time. In previous labs, the DSP shield has

been used for spectrum analysis for an audio signal that is 512

samples long at a sample rate of 48kHz, meaning the sample is

10ms.

 To capture the frequency content of a signal as a function

of time as well, I programmed the DSP to perform DFT on a

specific time window of the signal, move the window, and

perform the DFT again. Then I plot how the frequencies change

over how far the window is shifted in time. This process is

known as the spectrogram.

The goal of this project is to use the DSP shield record and

perform a spectrogram on a 2 seconds long audio file with a

programmable window length, window type and block

skipping length. This spectrogram will then be sent over the

serial port to a PC computer via MATLAB for visual analysis.

II. TIMELINE

 Before following through with the project, the timeline of

the project was established to get a good sense of how much

time I will need to take for the project. The biggest change I had

to make was that I was unable to get the real-time spectrogram

to work because the serial port was too slow. I also had to take

some time to develop code that writes and reads audio files to

the SD card.

A. Anticipated Timeline

Week 1: Get input audio and perform one window of the

spectrogram to be sent over MATLAB

Week 2: Perform full spectrogram with all slices together.

Week 3: Vary parameters like window length/type and sample

rate for different spectrograms.

Week 4: Play audio while spectrogram plays, maybe to some

processing like speech or note recognition.

B. Actual Timeline

Week 1: Get input audio and perform one window of the

spectrogram to be sent over MATLAB

Week 2: Get full Input Audio by storing the data onto an SD

card. Read the data from the SD card.

Week 3: Perform full spectrogram and send spectrogram and

audio to MATLAB

Week 4: Vary parameters like window length/type and sample

rate for different spectrograms.

III. CONCEPTS USED

To perform the spectrogram, we need to first understand
the DFT, Windowing, and the Time-Dependent Fourier
Transform.

A. Discrete Fourier Transform

To get the Fourier transform of a discrete signal, which is the
only possible choice of getting a signal as opposed to a digital
signal, we can only perform the Discrete Time Fourier
Transform, which is defined as:

𝑋(𝑒𝑗𝑤) = ∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑛

∞

𝑛=−∞

 (1)

But because we are sampling our signal, the DFTF will be a
periodic signal that is a function of the sampling frequency. To
ensure that there is no aliasing of the signal, we assume that the
sampling frequency is twice the maximum frequency of our
sampled signal.

However, the DSP cannot directly store the Fourier

Transform of a signal in the DSP because it is a continuous
signal; therefore, the DFTF needs to be discretized to N-points,
meaning, we need to store the DFT, which is defined as:

𝑋[𝑘] = 𝑋 (𝑒
2𝜋𝑘

𝑁) (2)

The DSP shield has a built-in Fast Fourier Transform (FFT)
function that I will use to determine the DFT, and it’s the most
efficient when the number of points used is a power of 2.

For an N-point DFT of a sampling frequency of fs, the band
of frequencies we get range from 0 to fs/2 with N/2 frequencies
available to use for viewing. This is because the frequencies
from fs/2 to fs are flipped duplicates of the frequencies from 0 to
fs/2 because of the periodic nature of the DFT. This means that
a longer DFT will give us more frequency resolution of our
signal.

B. Windowing

The idea of the spectrogram is to perform the DFT on a

specific section of the audio sample, and to do this we need to

get a window of the sample.

If we were to just simply copy a segment of the signal to be

processed by the DFT, we are essentially multiplying the signal

in the time domain by a rectangular function, which means we

are convoluting our signal in the frequency domain by a sinc

function. This greatly distorted our frequency response because

the sinc function has lower magnitudes in the high frequencies,

meaning there will be distortion in the signal.

Ideally, we want to get a rectangular window of the signal

in the frequency domain, so the best way to accomplish this is

to multiply the time-signal by a window function who’s

frequency response looks more like a rectangle. There are

several ways to do this, but the most common way is to use the

Hann, Hamming, or Bartlett window. The Bartlett window is

easiest to compute because it’s simply a linear function. The

sinc function could work, but it’s computationally complicated,

so the Hann and Hamming windows are better alternatives.

As seen in Figure 2, the frequency response of the Hann and

Hamming windows are very close to rectangular, meaning the

frequency response will be less distorted than convoluting with

the rectangular window (which isn’t rectangular in frequency

response) and the Bartlett Window (which has some odd

behavior approaching the edges of the windows).

Fig. 1. Different Window in Time-Domain

Fig. 2. Different Windows in Frequency-Domain (Hann and Hamming are

basically rectangular, it’s hard to determine from the graph)

C. Time-Dependent Fourier Tranform

 Finally to put everything together, we will now discuss how

to perform the Time-Dependent Fourier Transform. An overall

description is that we simply need to multiply our signal by the

window that is time-shifted to the portion of the signal we wish

to analyze and then perform the DFT on that section. The

overall equation is:

𝑋[𝑛, 𝑘] = ∑ 𝑥[𝑛𝑅 + 𝑚]𝑤[𝑚]𝑒−𝑗(
2𝜋𝑘

𝑁
)𝑚

𝐿−1

𝑚=0

 (3)

 The Window w[m] has a length L, n is which block of

samples to get, k is the frequency in the DFT, and R is how

many samples to skip to get the next window of samples.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Time Domain of Windows

Rectangular

Hann

Hamming

Bartlett

0 50 100 150 200 250 300 350 400 450 500

-2

-1.5

-1

-0.5

0

FFT of windows

Rectangular

Hann

Hamming

Bartlett

IV. IMPLEMENTATION

 The three main functionalities implement were Audio

sample capture, spectrogram computation, and MATLAB

control of DSP.

A. Acquired Data

 In the beginning, my first attempt to acquire the audio data

was to copy data from the Audio buffers every single a new

buffer is filled, and keep filling them until the required window

length is acquired. This was really difficult to implement

because depending on how many samples I skip per block and

the length of the window, the number of samples to copy from

the audio buffer complicated and there needed to be a place to

store the other samples.

 Afterwards, I decided that the simplest way was to store the

entire audio file onto an SD card, very much like the recorder

lab that was done in the beginning of the quarter. This way, the

audio data will always be available and I only need to parse

through the .wav file stored in the SD card. I implemented a

recording function that get the audio from the DSP input for a

specified amount of time, and then it store the audio file into

the SD card. Furthermore, I also implemented a function that

reads the audio file from the SD card and sends it over to

MATLAB for viewing. Because the serial channel is limited by

the number of bytes it can send, I split the audio file into

multiple chunks and concatenate the data together.

B. Spectrogram Computation

The spectrogram was computed from equation (3) using the

built-in FFT library commands. The two options I had in storing

the spectrogram data was either in the SD as a text file or to

send it over back through MATLAB. I ended up choosing the

latter because I was hesitant on requiring that the user would

take out the SD of the DSP shield to analyze the spectrogram

data, so I had the data be sent over MATLAB. Once again,

because the maximum serial data length was 1024, I simply

made the maximum length of the window to be 512 to take

account of complex values. That way, I send one spectrogram

window in one serial send and I keep sending the spectrogram

windows until the entire spectrogram has been processed.

If I wanted to, I could’ve also split the spectrogram data into

multiple serial sends, but this can be done in future iterations.

C. MATLAB Control

 The DSP shield depends on MATLAB to determine what

to do. Drawing inspiration from previous labs, I implemented a

command system that MATLAB can send to the DSP shield.

TABLE I. MATLAB COMMANDS

Number Command

10 Record DSP Input

11 Send Audio File

20 Compute and Send Spectrogram

30 Send Window

31 Block Skipping Size

32 Set Record Time

 The test MATLAB script I wrote was to get record 2

seconds of audio, send a window that I design before-hand, get

the audio file, and then get the spectrogram data. As mentioned

before, all of the data has to be sent in bursts. As a result, the

MATLAB script has to take into account of how many bursts

of data the DSP needs to send and how many get.

D. Other Comments

 As mentioned earlier, I had attempted to perform a real-time

spectrogram of the input audio to the DSP, but the biggest

bottleneck I faced was the speed of which the data is sent over

to MATLAB that I ended up not implementing this part into the

DSP shield. One thing to try in the future is to reduce the

amount of data that is sent over through serial.

V. RESULTS

 I compare the results of my spectrogram between the

spectrogram developed by MATLAB. I will be using the

spectrogram I develop to analyze the audio signals I have while

varying parameters of the spectrogram.

 The audio input signal I processed was me saying “sha”

repeatedly. The beginning “sh” has a lot of high-frequency

content in the audio while the “a” has fuller low-frequency

content. The spectrogram output I anticipate is one that has high

frequency content in the beginning then low frequency content

towards the end.

 All frequency values in the y-axis are all normalized

frequencies, where I divide the actual frequencies by the

sampling rate and multiply them by 2π, meaning the maximum

normalized frequency seen in the spectrogram plots should be

π.

A. Comparison to MATLAB

Figure 3 shows the comparison between the spectrogram

computed by the DSP shield vs the spectrogram computed by

MATLAB. I use a Hann window of length 512 samples, I have

a block skipping rate of 256 samples, a record length of 2

seconds, and a sampling rate of 24kHz. The two spectrogram

are very similar to each other when the same window was used.

The time-domain audio signal lines up quite well with the

spectrogram output because it portion of the audio where the

frequency is higher, the spectrogram will show a higher value

in higher frequencies.

B. Different Window Types

Figure 4 shows the comparison between different windows

used to multiply the selected portions of the audio signal. I used

a Hann window for the first section and a Rectangular window

for the second part.

Because the Rectangular window does not have a very clear

high-frequency cut-off behavior, there is some strange

transitions spikes that are a result of using the rectangular

window that are less prominent than the ones in the Hann

window.

Fig. 3. Spectrogram Comparison between DSP and MATLAB

Fig. 4. Spectrogram Comparison of Window Types

Fig. 5. Spectrogram Comparison of Window Lengths

Fig. 6. Spectrogram Comparison of Block Skipping Amounts

C. Different Window Lengths

Figure 5 depicts using different window lengths for the

Hann filter, and as expected, the frequency resolution is less for

shorter windows. The lengths I use are 512, 256, and 128. This

is because there are fewer frequencies that are shown in the

spectrogram. The spectrogram bands for shorter windows are

thicker than those of the spectrogram bands in longer windows.

D. Different Skip Values

Finally, Figure 6 compares the spectrograms of different

block skipping values. With window lengths of 512, I use the

values 128, 256, and 1024 (which has no overlap). The

spectrogram with a larger block skipping amount shows that the

frequency values are thicker over time which makes sense

because we are sampling fewer windows over the same amount

of time.

VI. FUTURE WORK

 After developing a spectrogram, the next step would be

using the data from the spectrogram to determine various

qualities of the signal. An example of a potential application of

the spectrogram is to do some audio and speech processing. We

know that various speech patterns and music tones have

different frequency contents in the sound, so by performing the

spectrogram on the signal, one can predict what that sound was.

A naïve speech or tonal recognition program can be developed

from this spectrogram in the future.

VII. APPENDIX

List of critical files in compressed folder:

 Spectrogram.ino – Source file for DSP Shield

 Spectrogram_MATLAB_Comp. – compares the

MATLAB and DSP shield spectrogram outputs

 Spectrogram_Skip_Comp.m – compares the

spectrogram outputs at different block skipping values

 Spectrogram_Window_Length_Comp.m - compares

the spectrogram outputs at different window lengths

 Spectrogram_Window_Type_Comp.m – compares

the spectrogram outputs at different window types.

