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Abstract—This report briefly describes the theory and 

implementation of a spectrogram of an audio file performed by a 

DSP shield that sends the spectrogram data over a serial link to 

MATLAB. A brief analysis of the different spectrogram data will 

also be discussed. 

I. INTRODUCTION 

      The Discrete Fourier Transform (DFT) is a great way for a 

microprocessor to determine the frequency content of a signal, 

but like most interesting signals that engineers would like to 

analyze vary over time. This means that the frequency content 

of a signal will change over time. Furthermore, taking the DFT 

of a very long signal with a lot of samples can be 

computationally expensive but not very information because 

you do not know when certain bands of frequencies are present 

at a certain point of time. In previous labs, the DSP shield has 

been used for spectrum analysis for an audio signal that is 512 

samples long at a sample rate of 48kHz, meaning the sample is 

10ms.  

      To capture the frequency content of a signal as a function 

of time as well, I programmed the DSP to perform DFT on a 

specific time window of the signal, move the window, and 

perform the DFT again. Then I plot how the frequencies change 

over how far the window is shifted in time. This process is 

known as the spectrogram. 

The goal of this project is to use the DSP shield record and 

perform a spectrogram on a 2 seconds long audio file with a 

programmable window length, window type and block 

skipping length. This spectrogram will then be sent over the 

serial port to a PC computer via MATLAB for visual analysis. 

II. TIMELINE 

      Before following through with the project, the timeline of 

the project was established to get a good sense of how much 

time I will need to take for the project. The biggest change I had 

to make was that I was unable to get the real-time spectrogram 

to work because the serial port was too slow. I also had to take 

some time to develop code that writes and reads audio files to 

the SD card. 

 

 

A. Anticipated Timeline 

 

Week 1: Get input audio and perform one window of the 

spectrogram to be sent over MATLAB 

Week 2: Perform full spectrogram with all slices together. 

Week 3: Vary parameters like window length/type and sample 

rate for different spectrograms. 

Week 4: Play audio while spectrogram plays, maybe to some 

processing like speech or note recognition. 

B. Actual Timeline 

 

Week 1: Get input audio and perform one window of the 

spectrogram to be sent over MATLAB  

Week 2: Get full Input Audio by storing the data onto an SD 

card. Read the data from the SD card. 

Week 3: Perform full spectrogram and send spectrogram and 

audio to MATLAB 

Week 4: Vary parameters like window length/type and sample 

rate for different spectrograms. 

III. CONCEPTS USED 

To perform the spectrogram, we need to first understand 
the DFT, Windowing, and the Time-Dependent Fourier 
Transform.   

A. Discrete Fourier Transform 

To get the Fourier transform of a discrete signal, which is the 
only possible choice of getting a signal as opposed to a digital 
signal, we can only perform the Discrete Time Fourier 
Transform, which is defined as: 

𝑋(𝑒𝑗𝑤) = ∑ 𝑥[𝑛]𝑒−𝑗𝜔𝑛

∞

𝑛=−∞

             (1) 

But because we are sampling our signal, the DFTF will be a 
periodic signal that is a function of the sampling frequency. To 
ensure that there is no aliasing of the signal, we assume that the 
sampling frequency is twice the maximum frequency of our 
sampled signal. 

However, the DSP cannot directly store the Fourier  



Transform of a signal in the DSP because it is a continuous 
signal; therefore, the DFTF needs to be discretized to N-points, 
meaning, we need to store the DFT, which is defined as: 

𝑋[𝑘] = 𝑋 (𝑒
2𝜋𝑘

𝑁 )                      (2) 

The DSP shield has a built-in Fast Fourier Transform (FFT) 
function that I will use to determine the DFT, and it’s the most 
efficient when the number of points used is a power of 2. 

For an N-point DFT of a sampling frequency of fs, the band 
of frequencies we get range from 0 to fs/2 with N/2 frequencies 
available to use for viewing. This is because the frequencies 
from fs/2 to fs are flipped duplicates of the frequencies from 0 to 
fs/2 because of the periodic nature of the DFT. This means that 
a longer DFT will give us more frequency resolution of our 
signal. 

B. Windowing 

The idea of the spectrogram is to perform the DFT on a 

specific section of the audio sample, and to do this we need to 

get a window of the sample. 

If we were to just simply copy a segment of the signal to be 

processed by the DFT, we are essentially multiplying the signal 

in the time domain by a rectangular function, which means we 

are convoluting our signal in the frequency domain by a sinc 

function. This greatly distorted our frequency response because 

the sinc function has lower magnitudes in the high frequencies, 

meaning there will be distortion in the signal. 

Ideally, we want to get a rectangular window of the signal 

in the frequency domain, so the best way to accomplish this is 

to multiply the time-signal by a window function who’s 

frequency response looks more like a rectangle. There are 

several ways to do this, but the most common way is to use the 

Hann, Hamming, or Bartlett window. The Bartlett window is 

easiest to compute because it’s simply a linear function. The 

sinc function could work, but it’s computationally complicated, 

so the Hann and Hamming windows are better alternatives. 

As seen in Figure 2, the frequency response of the Hann and 

Hamming windows are very close to rectangular, meaning the 

frequency response will be less distorted than convoluting with 

the rectangular window (which isn’t rectangular in frequency 

response) and the Bartlett Window (which has some odd 

behavior approaching the edges of the windows). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Different Window in Time-Domain 

 
Fig. 2. Different Windows in Frequency-Domain (Hann and Hamming are 

basically rectangular, it’s hard to determine from the graph) 

 
 

C. Time-Dependent Fourier Tranform  

      Finally to put everything together, we will now discuss how 

to perform the Time-Dependent Fourier Transform. An overall 

description is that we simply need to multiply our signal by the 

window that is time-shifted to the portion of the signal we wish 

to analyze and then perform the DFT on that section. The 

overall equation is: 

 

𝑋[𝑛, 𝑘] =  ∑ 𝑥[𝑛𝑅 + 𝑚]𝑤[𝑚]𝑒−𝑗(
2𝜋𝑘

𝑁
)𝑚

𝐿−1

𝑚=0

   (3) 

       

      The Window w[m] has a length L, n is which block of 

samples to get, k is the frequency in the DFT, and R is how 

many samples to skip to get the next window of samples. 
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IV. IMPLEMENTATION 

      The three main functionalities implement were Audio 

sample capture, spectrogram computation, and MATLAB 

control of DSP. 

A. Acquired Data 

      In the beginning, my first attempt to acquire the audio data 

was to copy data from the Audio buffers every single a new 

buffer is filled, and keep filling them until the required window 

length is acquired. This was really difficult to implement 

because depending on how many samples I skip per block and 

the length of the window, the number of samples to copy from 

the audio buffer complicated and there needed to be a place to 

store the other samples.  

      Afterwards, I decided that the simplest way was to store the 

entire audio file onto an SD card, very much like the recorder 

lab that was done in the beginning of the quarter. This way, the 

audio data will always be available and I only need to parse 

through the .wav file stored in the SD card. I implemented a 

recording function that get the audio from the DSP input for a 

specified amount of time, and then it store the audio file into 

the SD card. Furthermore, I also implemented a function that 

reads the audio file from the SD card and sends it over to 

MATLAB for viewing. Because the serial channel is limited by 

the number of bytes it can send, I split the audio file into 

multiple chunks and concatenate the data together. 

B. Spectrogram Computation 

The spectrogram was computed from equation (3) using the 

built-in FFT library commands. The two options I had in storing 

the spectrogram data was either in the SD as a text file or to 

send it over back through MATLAB. I ended up choosing the 

latter because I was hesitant on requiring that the user would 

take out the SD of the DSP shield to analyze the spectrogram 

data, so I had the data be sent over MATLAB. Once again, 

because the maximum serial data length was 1024, I simply 

made the maximum length of the window to be 512 to take 

account of complex values. That way, I send one spectrogram 

window in one serial send and I keep sending the spectrogram 

windows until the entire spectrogram has been processed. 

If I wanted to, I could’ve also split the spectrogram data into 

multiple serial sends, but this can be done in future iterations.   

C. MATLAB Control 

       The DSP shield depends on MATLAB to determine what 

to do. Drawing inspiration from previous labs, I implemented a 

command system that MATLAB can send to the DSP shield.  

TABLE I.  MATLAB COMMANDS 

 

Number Command 

10 Record DSP Input 

11 Send Audio File 

20 Compute and Send Spectrogram 

30 Send Window 

31 Block Skipping Size 

32 Set Record Time 

  

      The test MATLAB script I wrote was to get record 2 

seconds of audio, send a window that I design before-hand, get 

the audio file, and then get the spectrogram data. As mentioned 

before, all of the data has to be sent in bursts. As a result, the 

MATLAB script has to take into account of how many bursts 

of data the DSP needs to send and how many get. 

D. Other Comments 

      As mentioned earlier, I had attempted to perform a real-time 

spectrogram of the input audio to the DSP, but the biggest 

bottleneck I faced was the speed of which the data is sent over 

to MATLAB that I ended up not implementing this part into the 

DSP shield. One thing to try in the future is to reduce the 

amount of data that is sent over through serial. 

 

V. RESULTS 

      I compare the results of my spectrogram between the 

spectrogram developed by MATLAB. I will be using the 

spectrogram I develop to analyze the audio signals I have while 

varying parameters of the spectrogram. 

      The audio input signal I processed was me saying “sha” 

repeatedly. The beginning “sh” has a lot of high-frequency 

content in the audio while the “a” has fuller low-frequency 

content. The spectrogram output I anticipate is one that has high 

frequency content in the beginning then low frequency content 

towards the end. 

      All frequency values in the y-axis are all normalized 

frequencies, where I divide the actual frequencies by the 

sampling rate and multiply them by 2π, meaning the maximum 

normalized frequency seen in the spectrogram plots should be 

π. 

 

A. Comparison to MATLAB 

Figure 3 shows the comparison between the spectrogram 

computed by the DSP shield vs the spectrogram computed by 

MATLAB. I use a Hann window of length 512 samples, I have 

a block skipping rate of 256 samples, a record length of 2 

seconds, and a sampling rate of 24kHz. The two spectrogram 

are very similar to each other when the same window was used.  

The time-domain audio signal lines up quite well with the 

spectrogram output because it portion of the audio where the 

frequency is higher, the spectrogram will show a higher value 

in higher frequencies. 

B. Different Window Types 

Figure 4 shows the comparison between different windows 

used to multiply the selected portions of the audio signal. I used 

a Hann window for the first section and a Rectangular window 

for the second part. 

Because the Rectangular window does not have a very clear 

high-frequency cut-off behavior, there is some strange 

transitions spikes that are a result of using the rectangular 

window that are less prominent than the ones in the Hann 

window. 

 



Fig. 3. Spectrogram Comparison between DSP and MATLAB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Spectrogram Comparison of Window Types 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig. 5. Spectrogram Comparison of Window Lengths 

 

Fig. 6. Spectrogram Comparison of Block Skipping Amounts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



C. Different Window Lengths 

Figure 5 depicts using different window lengths for the 

Hann filter, and as expected, the frequency resolution is less for 

shorter windows. The lengths I use are 512, 256, and 128. This 

is because there are fewer frequencies that are shown in the 

spectrogram. The spectrogram bands for shorter windows are 

thicker than those of the spectrogram bands in longer windows. 

D. Different Skip Values 

Finally, Figure 6 compares the spectrograms of different 

block skipping values. With window lengths of 512, I use the 

values 128, 256, and 1024 (which has no overlap). The 

spectrogram with a larger block skipping amount shows that the 

frequency values are thicker over time which makes sense 

because we are sampling fewer windows over the same amount 

of time. 

VI. FUTURE WORK 

      After developing a spectrogram, the next step would be 

using the data from the spectrogram to determine various 

qualities of the signal. An example of a potential application of 

the spectrogram is to do some audio and speech processing. We 

know that various speech patterns and music tones have 

different frequency contents in the sound, so by performing the 

spectrogram on the signal, one can predict what that sound was. 

A naïve speech or tonal recognition program can be developed 

from this spectrogram in the future.    

 

VII. APPENDIX 

 

List of critical files in compressed folder: 

 Spectrogram.ino – Source file for DSP Shield 

 Spectrogram_MATLAB_Comp. – compares the 

MATLAB and DSP shield spectrogram outputs 

 Spectrogram_Skip_Comp.m – compares the 

spectrogram outputs at different block skipping values 

 Spectrogram_Window_Length_Comp.m -  compares 

the spectrogram outputs at different window lengths 

 Spectrogram_Window_Type_Comp.m – compares 

the spectrogram outputs at different window types.

 


